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Abstract. A linear array of three lasers that are coupled mutually in space is investigated. It is shown that
the phase of the laser fields is locked with intermediate coupling while the laser intensities are totally chaotic
and chaotically synchronized. When the intensities of lasers reenter the regime of chaotic synchronization
at smaller coupling constant, the laser fields show low degree of phase locking. The phase differences in
the fields between three lasers show rich patterns when the coupling is changed.

PACS. 05.45 Xt Synchronization; coupled oscillators – 42.65 Sf Dynamics of nonlinear optical systems;
optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics

1 Introduction

Due to its role in understanding complex dynamics and in
view of practical applications, theoretical and experimen-
tal investigations of chaotic synchronization in coupled
nonlinear systems have attracted much attention in re-
cent years [1–16]. The synchronization of chaos was stud-
ied in the context of electronic circuits [1–4], Josephson
junctions [5–8], laser dynamics [9–13], and secure commu-
nications [14–16]. Meanwhile, the generalized synchroniza-
tion [17–21] and phase synchronization [22–28] in coupled
nonlinear systems were also studied.

In most of the previous studies concerning chaotic syn-
chronization in coupled laser systems, only the chaotic
intensities are considered [9–16]. However, the phase re-
lations between lasers in the systems also need to be
investigated when the lasers are employed in practical
applications.

In this paper, the phase locking and chaotic synchro-
nization of intensities in an array of three spatially cou-
pled, solid state lasers with pump modulation is inves-
tigated theoretically. In Section 2, theoretical models of
three lasers with nearest neighbor coupling are presented.
In Section 3, the rich patterns between phase differences of
pairs of lasers are investigated together with the intensity
relations between three lasers. The periodic synchroniza-
tion of intensities between three lasers with very strong
and extremely weak coupling is studied in Section 4. A dis-
cussion of these phenomena concludes the paper.
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2 Theoretical models

The equations describing the time evolution of the com-
plex, slowly varying electric field Ej and gain Gj of laser
j of three spatially coupled, pump modulated solid state
lasers are as follows [9–12]

dEj
dt

=
1
τc

[(Gj−αj)Ej−κj,j+1Ej+1−κj,j−1Ej−1] +iωjEj

dGj
dt

=
1
τf

{
pj [1 +M sin(Ωt)] −Gj(1 + |Ej |2)

}
· (1)

In these equations, τc is the cavity round trip time, τf is the
fluorescence time, pj, αj and ωj are the pump parameter,
loss, and detuning from common cavity mode respectively,
M is the modulation depth of the pump beams, and Ω =
2πf0 is the angular frequency of modulation.

The lasers on a straight line are spatially coupled to
nearest neighbors with strength κjm that is assumed to be
small. For a laser beam of Gaussian intensity profile with
a beam waist ω0 at I/I0 = 1/e2, the coupling strength is
defined as

κjm = exp
[
− (∆djm)2

2ω2
0

]
(2)

where ∆djm = dj−dm is the distance between the nearest
lasers. This means that small ∆djm corresponds to strong
coupling while large ∆djm corresponds to weak coupling.
It is obvious that the outer most lasers are not coupled,
i.e., κj,j−1 = 0 for j = 1 and κj,j+1 = 0 for j = 3 in a
linear array of three lasers.
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Fig. 1. The average visibility V as a function of separation
∆d of the laser system.

The phase and intensity of the laser system can be
written as

θj = arctan
(
Eyj
Exj

)
(j = 1, 2, 3)

Ij = E2
xj +E2

yj . (3)

To characterize the phase dynamics, the average visibility,
i.e., the first order coherence V in coupled three lasers is
introduced

V =
N∑

j,m=1,j 6=m

EjE
∗
m∑N

j=1 Ij
(4)

with N = 3. In laser systems, V = 1.0 corresponds to
perfect coherence while V = 0.0 corresponds to incoherent
light. For 0.0 < V < 1.0, the light in the array is partially
coherent. The light field can be said to be incoherent if
V < 0.05.

The numerical simulations are based on integration of
equations (1) for identical laser system. In numerical cal-
culations, p1 = p2 = p3, α1 = α2 = α3, τc, τf , M , f0

and ω0 are fixed constants. The distances between lasers
are the same, i.e., ∆d = ∆djm and κ = κjm. The de-
tuning between each laser is given by ∆ω = ωj+1 − ωj =
5.0 × 105 (1/s)(j = 1, 2) with ω1 = 0.0. Other param-
eters are varied according to the requirement of chaotic
synchronization.

The average visibility V of the laser system is plot-
ted in Figure 1. It is seen that there is a peak in V
that corresponds to perfect coherence with V = 1.0 at
∆d = 0.937 mm for strong coupling. When the dis-
tance ∆d between lasers is reduced for very strong cou-
pling, the value of V is decreased to a minimum value of
about 0.730 and then increased smoothly as ∆d decreased
further for even stronger coupling. When ∆d is increased
with weak coupling, the value of V is dropped sharply
around ∆d = 0.98 mm and oscillates with small ampli-
tudes when ∆d is increased from 0.98 mm to 1.09 mm.
Then the value of V decreases approximately from 0.362 to
0.0163 as ∆d is increased further to 1.30 mm. This means
that the light fields in three lasers are changed from par-
tially coherent, perfect coherent, partially coherent again,
and to incoherent light as the coupling constant κjm be-
tween lasers is decreased.

3 Phase locking and chaotic synchronization

It is easy to calculate the phase θj and intensity Ij of
laser j from equation (3) by integration of equation (1).
The values of θj are limited in the range of 0 ≤ θj ≤
2π since the period of θj is 2π. The relations between
phase θj , intensity Ij are plotted in Figures 2A to 2L for
different laser separation ∆d together with those of phase
differences ∆θjk = θj − θk since the average visibility V is
related to the phase differences between lasers.

It is seen that both the relations of phase θj and inten-
sity Ij show chaotic motion with two bands structure for
medium coupling at ∆d = 0.947 mm with κ = 9.47×10−5

[Figs. 2A and 2B]. However, the relations of the phase dif-
ference ∆θjk between lasers show clear evidence of phase
locking [Fig. 2C]. It is seen that the relations between
∆θjk show almost the same patterns of long hexagon.
Since slight deviations in the shape and positions ap-
pear between hexagons, the average visibility V at ∆d =
0.947 mm is about 0.942 with very good coherence.

For slightly smaller coupling at ∆d = 0.96901 mm
with κ = 6.13 × 10−5, the phase θj shows chaotic mo-
tion with two bands structure of wider width [Fig. 2D]
while that of laser intensity Ij show chaotic synchroniza-
tion [Fig. 2E]. The relations between phase difference ∆θjk
show regular patterns of three lines [Fig. 2F]. Since the
curve in the graph of ∆θ23 versus ∆θ12 is different in
shape and position from others, the average visibility V
at ∆d = 0.96901 mm is about 0.765 with relatively high
coherence.

For weak coupling at ∆d = 1.068 mm with κ =
7.63 × 10−6, the relations of phase θj, intensity Ij
and phase difference ∆θjk show totally chaotic motion
[Figs. 2G–2I]. The average visibility V at ∆d = 1.068 mm
is about 0.00929. This means that the laser light is almost
incoherent.

For slightly weaker coupling at ∆d = 1.069 mm with
κ = 7.46 × 10−6, the phase θj show totally chaotic mo-
tion [Fig. 2J] while that of laser intensity Ij reenter the
regime of chaotic synchronization [Fig. 2K]. The rela-
tions between phase difference ∆θjk show similar patterns
[Fig. 2L] as that in Figure 2F. The average visibility V is
about 0.348 with low coherence due to larger differences
between ∆θjk but not close to zero.

From the phase relations shown in Figures 2A and 2D
with intermediate coupling of high degree of coherence, it
is seen that a phase locking between adjacent lasers ap-
pears evident. The fact that there is not a straight line in
the plots between θ1 and θ2 is mainly due to the fact that
there is a phase shift in one of the two phases, that deter-
mines the two bands structure apparent in the plot. Then
combing this structure, with the similar ones between θ2

and θ3, θ3 and θ1, one can get either “hexagonal-like struc-
ture” or “three lines structure” observed in the plots of the
phase differences [Figs. 2C and 2F]. Since the two bands
structure in the plots of θj vs. θm shown in Figure 2A
is cleaner than that in Figure 2D, the visibility V for
∆d = 0.947 mm is higher than that for ∆d = 0.96901 mm.
Similar phenomenon is also shown in Figures 2D and 2J.
It is seen that the structure shown in the plots of θj vs. θm



S. Zhu et al.: Phase locking and chaotic synchronization in an array of three lasers 125

Fig. 2. The relations of phase θj, intensity Ij and phase difference ∆θjk between three lasers. (A), (B), (C): ∆d = 0.947 mm;
(D), (E), (F): ∆d = 0.96901 mm; (G), (H), (I): ∆d = 1.068 mm; (J), (K), (L): ∆d = 1.069 mm.

can provide some evidence of the degree of phase locking
in the laser system.

The normalized power spectrum Pj(f) of the laser field
Ej(t) is also calculated by

Pj(f) =
| 1
2π

∫
Ej(t) exp(−iωt)dt|2∫

| 1
2π

∫
Ej(t) exp(−iωt)dt|2dω

(5)

where ω = 2πf . If the system is chaotic, the power spec-
trum is very broad with no particular conspicuous fre-
quencies apparent. Figures 3A to 3D are plots of Pj of the

laser fields for ∆d = 0.947 mm, 0.96901 mm, 1.068 mm,
and 1.069 mm. It is very clear that Pj(f) is very broad
and the lasers are totally chaotic.

4 Two extreme cases

From Figure 1, it is seen that the laser system is highly
coherent when the coupling between lasers is very strong
with relatively small separation ∆d (∆d < 0.98 mm).
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Fig. 3. The normalized power spectrum Pj(f) of the laser system. (A): ∆d = 0.947 mm; (B): ∆d = 0.96901 mm; (C):
∆d = 1.068 mm; (D): ∆d = 1.069 mm.

Fig. 4. The intensity Ij(t) and the power spectrum Pj(f) of the laser system. (A), (C): ∆d = 0.947 mm; (B), (D):∆d = 1.30 mm.

When the coupling between lasers is quite weak with rel-
atively large separation ∆d (∆d > 1.20 mm), the laser
system is almost incoherent.

For the two extreme cases of perfect coherent and in-
coherent light, the separations ∆d between lasers are at
0.937 mm and 1.30 mm respectively. The relations be-
tween intensity Ij of the three lasers are shown in Fig-
ures 4A and 4B for perfect coherence with V = 1.0 and
for incoherent light with V = 0.0163. It is seen that the in-
tensity Ij of the three lasers oscillate periodically for both
cases of ∆d = 0.937 mm and 1.30 mm. Though it seems

that the intensities are synchronized periodically but not
chaotically, there is almost no significant difference be-
tween these two extreme cases.

The normalized power spectrums Pj(f) of the laser
system for separation between lasers at ∆d = 0.937 mm
and 1.30 mm are also plotted in Figures 4C and 4D. It
is seen that the three lasers oscillate with the same fre-
quencies and periodic synchronization between any pair of
three lasers occurs for strong coupling of ∆d = 0.937 mm
with perfect coherence of V = 1.0 [Fig. 4C]. While the
three lasers oscillate periodically and also independently
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Fig. 5. The bifurcation diagrams of intensity Ij and phase difference ∆θjk of three lasers. (A):∆θjk versus ∆d; (B): Ij versus ∆d.

for very weak coupling of ∆d = 1.30 mm with almost in-
coherent light of V = 0.0163 [Fig. 4D]. The oscillation fre-
quencies are quite different between three lasers and there
is no regular relations between any pair of three lasers.

From the intensity Ij in Figures 4A and 4B, it is diffi-
cult to distinguish which one is periodically synchronized
with perfect coherence of V = 1.0. However, from the
normalized power spectrum in Figures 4C and 4D, it is
clear that the periodic synchronization with perfect co-
herence of V = 1.0 is shown in Figure 4C at laser separa-
tion ∆d = 0.937 mm. It seems that the periodic synchro-
nization is mainly due to the strong coupling in the laser
system.

5 Discussion

The bifurcation diagrams of phase difference ∆θjk and
intensity Ij in an array of three lasers are plotted in Fig-
ure 5. It is seen that the phase difference ∆θjk between
lasers is locked and the intensity Ij shows periodic motion
for strong coupling. While the phase difference is locked,
totally chaotic and chaotic synchronization of laser inten-
sities appear for medium coupling in certain parameter
regime. Both phase difference and intensities show totally
chaotic motion when the coupling is reduced. Then the
intensities reenter the regime of chaotic synchronization
while the phase difference shows low degree of locking
when the coupling decreases further. For extremely small
coupling, the lasers in the array oscillate independently
while the phases are irrelevant.

When synchronization of chaotic intensity occurs at
different distance ∆d between lasers, the coherence, i.e.,
the average visibility V , of the system is quite different.
For moderate values of ∆d with medium coupling, the
coherence of the system is high. While for large values
of ∆d with weak coupling, the coherence of the system is
low but not close to zero.

The phase difference ∆θjk in the fields between three
lasers show rich patterns as the values of coupling are
changed. It is shown that the chaotic synchronization of
intensities can only occur in partially coherent laser light.
So the phase dynamics is one of the important conditions
for occurrence of chaotic synchronization of intensities in
spatially coupled lasers systems [10].

The numerical simulations are also performed for
different values of losses with α1 < α2 < α3 while
other parameters are fixed constants. Similar phenom-
ena, such as chaotic intensity synchronization and phase
locking are observed. The disorder introduced in the sys-
tem can enhance the synchronization in the system. For
α1 < α2 < α3, slightly mismatch in dj can still maintain
the state of synchronization.
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